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On the basis of several simplifying assumptions a system of equations is written 

for a two-phase EHD (electrohydrodynamic) jet of low mobility particles formed 
by a two-dimensional source of the charged aerosol in a homogeneous turbulent 
flow. This system is solved by the method of series expansion in a small parame- 

ter. The case of sufficiently large Reynolds numbers is considered when the re- 

striction to the zero approximation is possible. A nonstationary bipolar jet and 
a stationary unipolar jet are examined. 

1. Basic equation,. We consider a turbulent EHD aerosol jet formed by a plane 

source of the charged aerosol which is placed in a homogeneous turbulent incompressible 
gas flow. We assume that the space charge density of the particles and their volume con- 
centration are sufficiently small and therefore we can neglect the reaction of the parti- 
cles on the turbulence of the flow and its averaged velocity. The particles are spherical 
and obey the Stokes drag law. The mobility of the particles is determined by the rela- 

tionship k = z / (6np) (2, I’ are the charge and the radius of the particle, respect- 

ively, p is the gas viscosity coefficient). In the general case charges of opposite signs 
can be present in the jet and Z+ = 1 Z-1 = con&. Coagulation and evaporation of the 

particles are not considered. The system of equations of electrohydrodynamics describes 
the true motion of the aerosol phase and coincides in this case with the conventional 

equations of electrohydrodynamics for a small interaction parameter [ 1, 23 

dq* / dt + k*+CEq+ -+- u~~q+ = 0, \-“F_ _’ 
F q 

q’ = Z*N, q = q+ - q-, E z _ ~~ 
(1.1) 

Here qf is the space charge density of the particles, nr (1. X, y) is the numberofpar- 
titles in the volume unit, E is the electric field strength, u is the velocity of the gas 
flow, t is the time, E is the dielectric constant of the gas. 

Let us assume that in a turbulent flow the true values can be represented in the form 
of the sum of components averaged in time (marked by angular brackets) and pulsating 
components (marked by dashes). Averaging the equations (1.1) in the conventional man- 
ner [3], we obtain the following system of equations for a turbulent EHD flow : 

a <q’> ___ k k*‘;. ((E) (q’)) _I-- (u) -,* (q’> :‘F 
at 

(1.2) 

k? ‘7 (E’q*‘> + ‘L (u’q+‘> m_~ 0, .: 2 (rp> _ _._ +_ c4) 

The last two terms in the first equation of (1.2) describe a turbulent transfer of charged 
particles which is conditioned by a correlation between the pulsations of the space charge 
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and pulsations of the electric field or of the flow velocity, respectively. 
Assuming that the scale of the translating vortices in a homogeneous turbulent flow is 

small and 1 u’ 1 < (n), 1 q’ ) < ) (q*> ) [3, 41, we estimate the order of pulsation 
of the field E’. For a jet propagating in the region s which is bounded by a grounded 

grid electrode not-distorting the hydrodynamic characteristics of the flow (in a particu- 

lar case S represents an infinite strip), we can write the solution of Poisson’s equation 

(1.1) in the form 
(E: =-+.;Gds, E' r ;I_\,f~G&, E'= -_c(p' 

s s 
(here G is Green’s function) from which follows that 1 E’ 1 -@ ) (E) 1 for 1 q’ ) < 

1 (q) 1. If k I (E,) 1 < (u,), k 1 (E,) (q+) 1 - 1 (u,‘~‘; 1, and this is fulfilled 
tor a sufficiently small mobility or density or the space charge in the jet, then, taking 
into account the relation between the scales of the fields (E) and E;’ we obtain the 

estimates k I (E,‘qk’) I <I (u,‘q+‘)J -k 1 <El,> (491, CIk=x’qk’) < (E,) <q*) 

We assume that the last two conditions are valid and in (1.2) we neglect the term 

k*V (E'q+'), For a small volume concentration of the aerosol particles the term 

0 (n’q+‘) in (1.2) can be represented in the form [3, 4] 

Y (1L’qt’) == - Y (LX ((I*‘)) (1.3) 

Here & is the coefficient of turbulent diffusion of the particles and represents either a 
scalar or a second rank tensor. 

Without introducing great error in the case of the diffusion of particles in a homogene- 
ous gas flow, we can neglect the turbulent transfer of particles in the direction of the 
mean velocity of the flow (henceforth the velocity (u) = const, is directed along the 

z-axis) and take into account only the transverse diffusion, assuming D = const [3]. 
For a nonstationary MD flow the characteristic time ?’ must be sufficiently large so 
that the diffusion process can be considered as a quasi-stationary. For a EHD jet propa- 

gating in an inhomogeneous gas flow, the coefficient of diffusion can be determined on 

the basis of semi-empirical theories of turbulent diffusion [3]. 
We introduce the nondimensional values 

X * =xIk Y* = YIL t,=tlT, (q$)= \‘qf)/A (1.4) 
(cp *> = 8 (([I) / A41J2, 
H = L/T (u.), 

(E,)=r(E)/AL, k,*=k*/k 
R=c(u)JkAL, Pe=@)L,iD 

Then, taking into account the previous assumptions, the system of equations (1.2) can be 
written in the form 

(1.5) 

(henceforth the asterisk for dimensionless values and the averaging sign are omitted), 

Here H is the parameter characterizing the nonstationary state of the flow, R is the 
electric Reynold’s number, Pe is the P&let number. For a periodic variation of the 
space charge density with time H = @L/U (O = ~TCV, Y is the angular frequency). 

We note that the system of equations (1.5) is also valid in the case of an MD jet of 
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weakly charged gas ions, if the assumptions mentioned above are fulfilled, The equa- 
tions describing the propagation of the ion laminar EHD jet, are determined in [2],where 
is shown that the molecule diffusion of ions can be neglected for R - 1 . For a turbu- 

lent EHD jet D - 1O-2 m2/sec, PB - 104 at u - 10~~ m/set, L - 1 m . 

Assuming q* - 1, x N 1, y - b/L - 1O-2 (b is the characteristic transverse di- 
mension of the EXD jet), we obtain ag*/&r - 1, Pe-la2q*/dy2 N L2/b2Pe - 1. 
It follows from the estimates quoted that when examining “narrow” turbulent jets 

(b/L < 1) , it is necessary to take into account the turbulent transfer of space charge. 
In the case of “wide” jets (b/L - 1) the influence of the turbulence can be neglected 

if R-WE, q*)ldy - 1. For aerosol FHD jets in many cases of practical importance 

R 2 1. For example, for r N 10-s m, Z N 10-l” c, N - ~(PITI-~, u N 102 
m/set, lt - 2. IO-sn set/m 2, e - IO-r1 f/m, L - 1 m, we obtain A N IO-5 
c/m 3, k - lO-8 mW. set, R N 102. 

Due to circumstances indicated we can solve the system (1.5) by the method of series 

expansions with respect to the sma 11 para nleter R-l assuming 
00 co 

(1.6) 
VI=0 m=o 

Substituting (1.6) into (1.5) and equating terms of the same power of R, we obtain the 
following recurrent system : 

F(m-1) * (2 = x, y) 

As a result the probIem at each stage is reduced to the system of two linear equations 
of the second order : a parabolic one for q$, and an elliptic one for cP(m) I If the sym- 
metric MD jet propagates in the gap between the two infinite earthed electrodes in the 

form of grids 1, 2 placed at the cross sections .7: = 0 and x = 1 (Fig. 1). then the 

Fig. 1 
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initial and boundary conditions have the form 

4;) = qo+ (h !I>? f&J, = 40- (6 Y), Ip(O) = 0 
q;m, = q;m) = qJ(m, = 0 (x = 0, m > 1) 

c+?(m)= 0 (z = 1, n>,O) 
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(1.8) 

au(%) a(?m) - = - = 0 ay @I 
(y-0, nz>O) 

!?(%a) * 07 (P(m) -->O (Y+ m, m&O) 

Here qo’ is the dimensionless space charge density of the corresponding sign of the 

section edge of the source of the ionized particles . 
We consider next symmetrical EHD jets spreading in the stream with homogeneous 

and isotropic turbulence for _??-I < 1 taking into account only the zero approximation. 
We assume that the grid electrodes do not distort that characteristics of the gas flow. 

2. The propagation of P nonstationary periodic bipolar EHD jet. 
We introduce a new dependent variable Q = q(o)’ - qcoj-. In this case the system of 
equations for the zero approximation and for the boundary conditions for q have the 

form 
~aQ+aQ_pe-la2Q-0 

at ax ay2 - 1 
~,g&_Q (2.1) 

Q = f(t)Qo(y) (x = 0); dQ/ay =i 0 (y = 0); Q -+ 0 (y +oa ) (2.2) 

Here and hereafter the subscript of cp is omitted. In writing down (2.2) a particular fern 
of time dependence of the space charge density was chosen for the section edge of the 

souKe 4(o)* = f(OQMl)~ (Y). 
We note that in Eq, (2.1) the absence of the parameters depending on the mobility of 

the particles permits the causes of time variations of the space charge density on the 
section edge of the source of the particles to be not specified. The charge density can 
change because of the change of N for Z* = const aud also because of the change 

of Z* for N c- const. 
Solving Eqs. (2.1) we apply the Fourier cosine transformation 

F* (z, 2, t> = J/z! F (Z, y, t> cos z_udy (2.3) 
0 

After transforming (taking into account (1,8), (2.2)) we obtain the system, the solution 
of which has the form 

Q* = Qo* (z) f (t - Hx) exp (- 2% j Pe) (2.4) 

Let us consider a particular case in which a source of a finite width 2h periodically 
generates space charge accordingly to the law 

Qo (t) = p co3 t, x = 0, (2.5) 
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As the characteristic density of the space charge A, the time T and the dimension L 
for the periodic EHD jets, it is convenient to choose A zz= max /c/U+ / (here rnax qO+ 7:: 

maxlqO-L &+. 40~ are the dimensional values), 2’ ::= l/w, L = U/W, and 

maxi (& ) = 1, ff = 1, Pe =z uz/wI). The total charge generated by the source du- 
ring one period is equal to zero, therefore in forming a jet it is not necessary to set a 
collector-electrode 2 (Fig. 1) at a finite distance from the source or to compensate the 

volume charge in some other manner. Assuming that the collector-electrode is placed at 

infinity and v 1 ;z; 0, we obtain on the basis of (2.4), (2.5) (2.3) 

The character of the variation of the longitudinal field & and the space charge den- 
sity Q along the axis of the jet at Pe =l: 500, t == 0 , is shown in Fig. 2, The cross 
sections 5 = rim/Z (m = 1,2, . ..) represent the boundaries of the regions of a mon- 
onomical charge. For x > n the extremes of the field E, are situated in the points 

x = nmi2. For z - 4x. 102 the field is practically equal to zero. 

3, The etatfonsry unlpolar EHD jet. Let us consider a stationary unipolar 
EHD jet formed by a linear source of ionized aerosol particles and situated at a distance 

z,, ahead of the electrode I (Fig. 1). The initial system of equations has the form (2.1) 
with N := 0, Q = q. As the characteristic density of the space charge in (1.4) the va- 
lue A == l/rtL is chosen, I is the current carried by the jet, The equation of current 

~ontinui~ in the case considered agrees with the equation of thermal conduction, the 

solution of which is : 
q =1 ; 

v 
- I’(? exp - 

I 
y” PC 

x (1: ;- a) 4 (s -+ .c”) 1 
(&I) 

for the condition qO(--x0, 0) = 6(y) (6 is the delta dunction). Accordind to the 
method of Grinberg f51, we represent tne solution of Poisson’s equation in the series form 

i4 

Cp = 2 U, s in j_En.~? [I,, 7 Zicp(x, y)sinnrzxdx (3.2) 
rt=r 

Multiplying the second equation of (2.1) by sin nnx and integrating it in accordance 

with (3.2). we obtain an ordinary differential equation 

(3.3) 

with the boundary conditions rl6’,,;tly I: 0 (y = Cl), vLr,l + 0 (y _-too ). Taking into 
account (3. l), (3.2) and integrating (3.3) we obtain the final expression for the potential 
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1;. t. 
‘P=x y \ stn nnq exp [nznz (7 + zO) / Pe - my] x (3.4) 

?l=l 0 

(1 - @ 64 + 11 - @ (z2)1 exp (23w>) drl 

21,2 = am - r/ 32&q-+ Pe 1/ tl + x0 

where (@ (2) is the probability integral. On the basis of (3.4) cp, E,, Ev were com- 

puted numerically for zt, = 20-3, P e = 104, 105, 106 which correspond to the 

inter-electrode gap lengths L = 1, 10, IOOm and b (0) = 1.4, 4.3,13.5 mm at 
u = 102 m/set, D = IO-sm 2/set. The half-width of the MD jet b (2) has been 

determined from the condition q (z,b)/q(z,O) = 0.01 and Eq.(3.1) 

b = 3.031/2(x + s,)/Pe 

We note that “narrow” jets of large length (bl L+l, L - 10 to 10s m) can occur, e. g. 

during the operation of an aerosol EHD neutral agent of static electricity in the flight 

of an aircraft. 
The distribution of the potential along the axis of the jet for different Re is shown in 

Fig. 3 (the curves l-3 correspond to Pe = 10 4, 106, 106). The maximum of potential 
is near z = 0.5; variation in Pe results in small changes of cp (5, 0) . For y > b a 
shift of the maximum occurs towards the electrode l and a decrease of the potential 
with increase of Y (Pe = IO6 , in Fig. 3 the curves 4-6 correspond to the values of 

y = 0.1, 0.5, 1 ). 
The variation of the potential across the jet for Pe = iO* (solid lines) and Pe = i06 

(dashed lines) is shown in Fig. 4 (the curves I, 2, 3 correspond to the cross sections 

z = 0.2, 0.5, 0.7). For Pe - iOe the potential along the cross section is practically 
constant (0 < Y / b < i). For relatively wide jets (Pe - i04) the potential attains its 
maximum on the axis of the jet and diminishes as the boundary y = b is approached. 
In this case the character of the potential variation coincides qualitatively with the re- 
sults in [S] of the numerical integration of the equations for an MD jet of ions at R -1, 

Pe --+ 00, b/L - 1. Outside the jet (left part of Fig. 4) the potential diminishes mo- 
notonically with the increase of y and at y - 1.5 is practically equal to zero. This 
indicates the possibility of an appoximate replacement of the inter-electrode gap in 

the form of an infinite strip of a unit width by a rectangle with sides x = 1, y = 1.5 ; 
this can be applied for numerical computations of the EHD jets for Pe > 104. 

The electric field strength E, on the jet’s axis varies nearly linearly for 0.3 < x < 

0.7 and increases sharply at small distances from the electrodes : 1 E, (0,O) 1 > E,(1,0) 

(see the curves l-3 in Fig. 5 which correspond to Pe = 104, 106, 106). The longitu- 
dinal field varies a little across the jet for Pe _ 106 (see Fig. 6, where Ex* = E, / 

E, (5, 0), Pe = 106, the curves l-3 correspond to x = 0, 0.5, i), therefore for the 
narrow jets we can assume approximately that E, C=C f~ (3) for 0 < y < b. The charac- 

ter of the variation of E, outside the jet is shown by curves 4, 5, 6 in Fig. 5 (respect- 
ively y = 0.1, 0.5, 1 for Pe = 106). 

The distribution of the transverse field E, in the different cross sections of the jet 
for Pe = i06 is shown in Fig. 7. The curve E, is also shown (dotted); it is calculated 
on the basis of the approximation for the “boundary layer” p. 81 under the condition 
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aE, 1 ax < dEu / &/ (actually, this condition is satisfied only near the axis of the jet in 
the gap 0.2 < x < 0.8). The solution of the simplified Poisson’s equation %E, / ay = 4 

for the symmetrical jet (E, (5, 0) = 0). in the boundary layer approximation and (3. l), 

(3.5) taken into account, has the form 

E&@($+) 

It follows from a comparison of the curves in Fig. 7 that the approximation of the 

boundary layer describes with an accuracy up to 10% the transverse component of the 

field for 0.35 < 5 < 0.95, 0 < y < b. The longitudinal field E, within the limits of 
the indicated approximation is not determined and must be obtained on the basis of ad- 
ditional assumptions. In the gap 0 < y < 00 the transverse field E, attains the maxi- 

mum near the boundary of the jet for y > b and then decreases monotonically with in- 
crease of y and for y > 0.1, Pe = 10’ to 10’ its value is practically independent of 
Pe. 
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